It’s remarkable how there are uncountably many non-normal numbers, yet they take up no space at all in the real numbers (form a null set), since almost all numbers are normal. And despite this, we can only prove normality for some specific classes of examples.
It helps me to think, how there are many “totally random” or non computable numbers, that are not normal because they don’t contain the digit 1.
The term for what you’re describing is a “normal number”. As @[email protected] correctly pointed out it is still an open question whether pi is normal. This is a fun, simple-language exploration of the question in iambic pentameter, and is only 3 minutes and 45 seconds long.
Merry Christmas!
It’s remarkable how there are uncountably many non-normal numbers, yet they take up no space at all in the real numbers (form a null set), since almost all numbers are normal. And despite this, we can only prove normality for some specific classes of examples.
It helps me to think, how there are many “totally random” or non computable numbers, that are not normal because they don’t contain the digit 1.