• 3 Posts
  • 61 Comments
Joined 1 year ago
cake
Cake day: July 1st, 2023

help-circle
  • Hey there panicnow! I would be happy to help give some input. It is better to avoid firing up the AC inverter whenever possible. If you have a car travel adapter for your devices that plug into the jackeries cigarette plug port that would be better. If you absolutely need more usbc-pd ports for your devices, there is a way to do that given your jackary has one or two of those circular barrel plug outputs that output 12v. Most powersttions should have one or two of them.

    If you have one of those barrel plug inputs youre in luck. Go on amazon and buy one of these to turn those jacks into car cigarette plug inputs.

    Then get a really nice usbc-pd car charger. I don’t actually have one but I like anker and trust their 100w pd charger would be high quality. You can go cheaper if you only need 65w or lower.


  • Thanks. Lighting has been an ongoing puzzle I’m figuring out. I originally went with rechargeable Luci light it was really nice warm bright lighting but expensive and failed within a season. Currently I’m using a cheap 5v plastic led light bulb that plugs into regular usba slot. Its enough to see what you are doing comfortably. But really the average person whos used to house bulbs including me wants the luxury of bright lighting. For now I’ve been firing up the AC inverter to run a nice lamp. However I have been considering making my own 12v light fixture with 12v e26 bulbs that plugs into either car cig plug or usbc-pd.

    In this picture is marked all the parts of an LED circuit that convert AC Into DC. It takes up about 40% of the board. Its much easier to power LEDs directly.



  • Im happy to explain pastermil. So first off let’s talk power.

    Electrical Power Systems

    Most off-grid electrical systems have a few major components.

    • A device that generates electrical energy

    • A battery that stores excess electrical energy for later

    • A charge controller which regulates the incoming raw electrical power from the generator as it charges up the battery, and smooths out the battery energy output

    • A power distribution interface which allows for connecting appliances to the batteries in a safe standardized way.

    My particular electric system has a 200w 28v solar panel for power generation, two 20ah lifepo4 batteries connected to double capacitance, and the charge controller doubles as a very basic interface with two usba slots and a car cigarette port.

    AC vs DC

    Now let’s talk about AC and DC. Theres essentially two kinds of electrical power people deal with.

    The difference between Alternating Current and Direct Current is in the way the power flows. Direct current moves in a straight path. Alternating current moves power back and forth in three perfectly spaced cycles.

    AC The one most people are more familiar with is AC power. it comes to your home from power plants through power lines and transformer boxes. You move around extension cords and plug the three prong outlets into a wall.

    Alternating Current (three phase) power is very easy to transmit long distance however its very high voltage. So only certain power hungry devices like kitchen appliances, washing machines, dryers and AC compressors use it directly. Most of your consumer home devices need to convert AV power down into more manageable DC power.

    DC Offgrid electrical systems with batteries are Direct Current by nature. All your power comes from the battery banks. The power moves straight from battery terminal negative to positive. It flows right through your appliances in one way out the other.

    The battery banks tend to be arranged into 12v, 24v, or 48v depending on the systems power draw and transmission needs.

    The popular standards for delivering direct current are:

    • 5v 2.4a usb (15 watts)

    • 12v 10a car cigarette plugs (120 watts, can be rated to supply 24v fused 15a I believe though not common at all)

    • circular dc barrel plug connectors, the most common size is 5.5mmx2.5mm but there are dozens if not hundreds of slightly different barrel plugs. Part of what makes usb so great is reducing arbitrary manufacturing complexity like this.

    • usbc-pd various voltages depending on charger, cable, and device at up to 100w for current protocol.

    • solar quick connects tend to be for connecting and transmitting high voltage DC power to charge controllers and power banks. Its worth mentioning but not that relevant to what were talking about.

    Most consumer devices in your home dont actually use wall outlet AC power directly, it uses wall power thats been converted and stepped down to DC power.

    Desktop computer power supplies, Laptops, monitors, vaporizers, led lights, DVD players, audio speakers, your phone. everything that can powered by usb and batteries. Everything that has barrel plug inputs and power bricks plugging into it.

    If you look closely on the power bricks plugged into the appliance you’ll see that it has an input and output voltage rating. The input tends to be 120vac here in america 240v over the pond, and the output tends to be either 5v, 9v, 12v, 15v or 20v DC usually up to 5 amps.

    Device vs Voltage Examples

    Laptops and computer monitors tend to be 20v, fast charging smart phones and the Nintendo switch docked are 15v, very bright home LED lights can be bought that are powered at 12v directly, the ps2 could be powered with 9v, and most usb devices charge at standard 5v. Would you like to guess which voltage profiles the USBC-PD protocol is capable of? Its all of them.

    Energy Conversion Efficency Losses

    Now let’s discuss energy efficiency. Converting from AC to DC eats up some of your power. So does converting from DC to AC. And its not small losses either, each time you convert its about a 15% total loss in efficency.

    This loss through conversion doesn’t matter when you pay cents on a kilowatt and have unlimited power at the tap. It adds up very quickly when you have a limited power supply and every watt hour counts.

    Let’s say I want to power a laptop on my offgrid DC system and my only means of powering it is the AC power brick cable that it came with. I would need to:

    1. Convert the DC power of the batteries to AC through an inverter. 15% efficency loss.
    2. Then convert that power right back down into slightly different DC with the power brick plugged in. 15%% efficency loss.
    3. The inverter and power brick are both parasitic draws. They eat a bit of power just sitting there even if nothing is being powered. Lets add 5% total system efficency loss each.

    Add these up and you get 30-40% of your power eaten away by this needless double converting. Wouldnt it be really nice if we could convert the battery DC voltage directly to the appliance DC voltage without those power hungry inverters and transformers?

    What DC-to-DC Converters Are

    Thats where dc to dc converters come in. They can convert one DC voltage to another. They still introduce efficency loss but way way less only 10% total.

    Traditionally you would hope your device had a commercially available 3rd party travel adapter for 12v car batteries. The dc to dc converter is built in and uses car plug.

    If you were SOL you has to wire up boost converters to raise up voltage and add resistors in series to lower it. You ever try to wire and solder your own circuts before? Its a tedious experience. Imagine doing that for each device voltage. Oh wait, you dont have to. Here’s what that looks like.

    A USBC-pd 100w charger that plugs into a cigarette port or is built into a power bank can convert a batteries 12vDC into 5v, 9v, 12v 15v, and 20v dynamically depending on the device.

    Do you know how magical that is? How much trouble that saves when it comes to mcguyvering a DC appliance that only came with AC cable to supply proper power directly? All I need is a 10$ usbc-pd to barrel plug cable that manually selects the voltage needed and some barrel plug adapter bits to fit into the appliance. Energy efficent and simple wiring. All the dynamic controller stuff is abstracted away in a safe way. Powerful enough to deliver 100 watts of power, and its going to be more powerful over time.


  • Usbc-pd is an absolute game changer as an off grid person. The fact a 100w charger can act as a dc to dc converter with up to five output voltages, at up to 100 watts is crazy. And that the protocol automatically detects and communicates the proper voltage is very convinent. The problem is that usbc-pd 100w chargers are expensive and you need to know what you are doing if you want to diy power appliances with it.

    Its really nice to have a standardized cable that just works and can be plugged in both ways. We really are approaching a Universaal Cable after a quarter century of RnD.






  • Like consciousness being greater than the sum of its parts and there being spiritual aspects to the universe. Like emotions existing as non localized complex energy frequencies, and karma existing.

    I used to be a hardcore scientific determinist athiest. The scientific method, mathematical logic, and unfalsifiablility were collectively my God. My version of the universe was a mechanical box our fates predetermined by an uncaring system. There was no room for magical thinking or maybe invisible unicorns. Thing either existed or they didn’t, yes or no, 1 or 0. Everything not absolute verifyable truth was worthless.

    Then I had a psychedelics phase, astral projected, experienced ego death, had telepathic communications with divine / cosmicbconsciousnesses using plants as mediums, looked at myself from third person with nonexistent eyeballs, ect, ect.

    I will never be able to prove to anyone my experiences are real, but what I experienced was real to me from my subjective reference frame in every way that matters.







  • Psudo random numbers come from a special set of mathematical equations which act as the basis for natural processes. These are known as nonlinear dynamic equations.

    Their outputs feed back into their inputs. They show areas of high initial sensitivity where any tiny change in input totally changes the output over time. Finally, they often show areas of different cycling behavior. The branch of math which studies them is holomorphic dynamics.

    The psudo-randomness of slightly different seed values generating wildly different outputs has to do sensitivity to initial conditions. This is a property of the paramater space structures in which those random number sequences cycles through. The ‘path’ of numbers that will be cycled through is determined by starting position and the geometric topology in the complex plane which the equation generates.

    By graphing and iterating psudo random equations in the conplex plane, it generates infinitely complex geometric structures called julia sets which govern how algebraic numbers cycle through pseudorandom walks depending on initial seed values and equation used. These julia sets often are fractals with infinite complexity at its borders at all scales of precision.

    Julia sets have a “stuff goes everywhere” property which is the the real magic of where sensitivity to initial conditions comes from. But now were getting deep into the weeds of math nerd territory.

    Simply put, you put a random number in and it spits a more-or-less random number out, thanks to wierd properties that the higher dimensional fractal hyper structures generated by the equation in the complex plane have. Those lower dimensional random number cycles are embedded into the julia set structurally.

    A big issue with psudo randoms is they will always give the same series numbers if you begin the equation with the same computationally finite seed values. You could the generated sequence of numbers to work back and find the seed values and equation used to generate them. This is a serious security concern when using them for cryptography. The amount of computational work it takes to work back is massive but its doable with modern quantum super computers.

    The mechanics of pseudo random numbers comes from statistical combinatorics, nonlinear algebra,fractals, chaos theory, and sensitivity to initial conditions.

    True random numbers come from directly measuring physical phenomenon with sufficient randomness in their mechanics.

    Things like the decay of a radioactive isotope or lava lamp turbulence have built in randomness. There is no seed or way to generate the same sequence of motions or predicting when isotopes decay.

    Turbulance for example has fractal properties in its energy distribution as well as random brownian motion adding up on the atomic scale. Radioactive half life has uncertainty principal built into it. These universal operations have true uncalculatable randomness thanks to entropy, the uncertainty principle, fractals, brownian motion, chaos theory, and sensitivitiy to initial conditions.

    The physical universe is the most powerful computer there will ever be. It calculates with infinite decimal precision in its mixed mathematical, statistical, and physical operations. It uses real trancendental like pi numbers with infinite non-repeating decimals, and does its calculations at the speed of causality/light.

    Our best super computers will never be infinitely powerful. Our numbers need to be finite and computable to work with them and understand them. The universe could not care less if its values are finitely computable or usable for human work.

    So theres fundamental limits to how random we can get through artificial computer algorithm generation using computable numbers. True randomness through physical processes leverages the universes in built infinite precision and mechanical algorithms as a black box and just measures the output result.